VibroChair: A PIECE OF FURNITURE FOR REPRESENTING MULTI-TRACK AUDIO VIA VIBROTACTILE STIMULATION

Carl von Ossietzky Universität Oldenburg

Noah Rickermann, Christoph Scheicht, Kai Siedenburg, Stephan Töpken Dept. of Medical Physics and Acoustics, University of Oldenburg

BACKGROUND

- Listeners with profound hearing impairment lack ability to experience to segregate sound sources in music
- Vibrotactile stimulation has been confined to single body parts; focus on representing multitrack audio is scarce

GOALS

- Develop a chair that uses vibrotactile stimulation for multiple body parts and can be part of a music listening experience at home / in a concert
- Support auditory object formation by presentation of vibrotactile information

VIBROTACTILE STIMULATION

- Tactile nerve fibres and information channels in glaborous skin, sensitive to music frequency range [Bolanowski1988, Mansfield2005]:
 - Pacinian corpuscles (PC) / P channel: 35...400 Hz
 - Rapid adapting (RA) / NP 1 channel: 10...100 Hz
- JNDFs are very limited compared to auditory perception [Merchel2020]
 - Whole-body vibration Δf/f ≈ 30% (f=5...40 Hz) [Bellmann2002]
 - Fingertip, Forearm Δf/f ≈ 25% (f=25 Hz)... 12% (f=200 Hz) [Mahns2006]
 - representation of melody information limited
- Spatial acuity of few centimeters for frequencies between 100 Hz and 200 Hz
 - might facilitate signal/instrument segregation

GEAR

- Custom-made chair
- Shaker: Bodyshaker (100 W): ~18 EUR
- Amplifier: the t.racks DSP (4x50 W): ~185 EUR

PROTOTYPE

PILOTING INSIGHTS

- With modern popular music, drums signal (incl. kick drum) is too intrusive to be presented at back
- Spatial coherence between auditory and vibrotactile stimuluation desirable
- High-frequency sounds hard to represent
- Perceived stereo width increases with stems represented across different body parts

FUTURE WORK

- Elaborate signal processing to optimize vibration signals
- Evaluate auditory object formation and perception of elementary auditory attributes [loudness, spatial impression, timbre] with multisensory stimulation
- Evaluate hearing-impaired and CI listeners' experience with multitrack audio represented via vibrotactile stimulation

Altinsoy, M. E., & Merchel, S. (2010). Cross-modal frequency matching: sound and whole-body vibration. Proc. HAID

2010, pp. 37-45.

Bellmann, M. A. (2002). Perception of whole-body vibrations: From basic experiments to effects of seat and steering-

wheel vibrations on the passenger's comfort inside vehicles. PhD-Thesis, Carl von Ossietzky Universität Oldenburg.

aspects of touch. The Journal of the Acoustical Society of America, 84, 1680-1694.

Bolanowski, S. J., Gescheider, G. A., Verrillo, R. T., & Checkosky, C. M. (1988). Four channels mediate the mechanical

human hairy skin. Journal of Neurophysiology, 95, 1442-1450.

Mansfield, N.J. (2005) Human response to vibration. CRC Press

TRIBD**IEBE**

Mahns, D. A., Perkins, N. M., Sahai, V., Robinson, L., & Rowe, M. J. (2006). Vibrotactile frequency discrimination in